摘要

针对数控机床热误差建模具有小样本、数据离散的特点,提出一种综合灰色预测和最小二乘支持向量机的热误差在线组合建模方法。根据机床温度和热误差的实验数据,分别建立热误差的灰色模型和最小二乘支持向量机模型,并通过加权系数将两者进行组合。以提高热误差的实测值和组合模型预测值之间的灰色综合关联度为目标,对模型的加权系数进行优化。在一台高架桥式龙门加工中心上进行建模实验,结果表明数控机床热误差最优权系数组合建模方法精度高、泛化能力强,优于灰色预测、最小二乘支持向量机和多元线性回归3种建模方法。利用该方法构建的预测模型进行机床热误差在线补偿,可有效减小热误差对机床加工精度的影响。

  • 单位
    中航工业成都飞机工业(集团)有限责任公司; 四川大学