摘要

针对S700K常见的8种故障模式和正常模式所对应功率曲线,提出一种基于概率神经网络(PNN)与改进的粒子群算法(PSO)相结合的道岔故障诊断方法。首先,在9种功率曲线上分别提取时域、频域特征统计量和时频域小波系数,并用主成分分析法降维每个域的特征量,得到特征向量;其次,以3个改进的PSO-PNN做分类器,并对分类器进行训练和预测;最后,3个分类器的预测结果做三取二表决。仿真结果表明:该方法能有效提高道岔故障诊断的准确率,具有良好的容错性。

全文