摘要
针对高光谱遥感图像分类中空间信息利用不充分、样本标记数量不足的问题,提出一种基于多尺度3D-CNN和卷积块注意力机制的高光谱图像分类方法。采用特征映射方式从不同感受野充分挖掘并融合高光谱图像的空间特征和光谱特征,对融合后的空谱特征进行卷积块注意力机制处理;通过残差思想构建深层网络,采用Dropout方法处理过拟合问题,最后通过Softmax分类器进行分类。在Indian Pines、Pavia University和Salinas Valley 3个高光谱数据集上进行大量实验,分类结果表明:所提方法优于其他经典方法。
- 单位