摘要
针对现有移动机器人在视觉避障上存在的局限,将深度学习算法和路径规划技术相结合,提出了一种基于深层卷积神经网络和改进Bug算法的机器人避障方法;该方法采用多任务深度卷积神经网络提取道路图像特征,实现图像分类和语义分割任务;其次,基于语义分割结果构建栅格地图,并将图像分类结果与改进的Bug算法相结合,搜索出最优避障路径;同时,为降低冗余计算,设计了特征对比结构来对避免对重复计算的特征信息,保障机器人在实际应用中实时性;通过实验结果表明,所提方法有效的平衡了多视觉任务的精度与效率,并能准确规划出安全的避障路径,辅助机器人完成导航避障。
- 单位