摘要

为快速准确地获取火电厂锅炉炉膛温度场在线监测信息,提出了一种基于深度神经网络(deep neural network,DNN)的声学层析成像(acoustic tomography,AT)温度场重建算法。对测量值进行归一化处理后,结合主成分分析(principal component analysis,PCA)降维,构建全连接网络区别峰型,分别搭建DNN与BP神经网络对归一化慢度值及其最值进行预测,最后重建温度场分布。采用该方法对4种典型的温度场模型进行了仿真,结果表明:DNN算法的重建质量优于Tikhonov正则化算法与共轭梯度算法,重建图像的平均相对误差和均方根误差分别小于0.36%和0.85%。