摘要
针对大规模数据集上的特征选择问题,一种变长表示的粒子群特征选择方法(VLPSO)表现出了良好的性能。然而,其完全随机的粒子生成方式导致初始化阶段具有一定的盲目性。同时,VLPSO单一的更新机制和种群间的信息隔离也影响了模型的分类性能。为了解决VLPSO的缺陷,提出了一种基于多行为交互的变维协同进化特征选择方法 (M-CVLPSO)。首先,为了改善随机初始化带来的盲目性,采用连续空间上的层次初始化策略,从期望上缩短了初始解与最优解之间的距离。其次,将粒子根据适应度分为领导者、追随者与淘汰者,在迭代过程中采用多种更新策略动态平衡算法的多样性和收敛性。同时,将维度缩减指标加入到适应度函数中,进一步增强了算法在部分数据集上的性能。从理论上证明了该算法的收敛性,并基于11个大规模特征选择数据集在分类精度、维度缩减和计算时间上进行实验分析。实验结果表明,本文算法相较于4种对比算法具有更好的综合表现。
- 单位