摘要
提出了一种基于随机中心距离排序的支持向量预选取方法.对于线性可分情况,该方法首先从每一个类别中随机选取一定数目的样本计算均值,并把该均值作为该类别样本的随机中心,然后对每一个样本计算它与另一类样本随机中心之间的距离,最后选择一定数目具有较小随机中心距离的原始样本组成边界样本集.对于非线性可分情况,此算法借助于核函数将原始问题映射到特征空间,然后再按照线性可分情况求解.由于支持向量往往分布在两类样本相邻的边界区域,因此此方法可以较为精确地预选取支持向量.在部分UCI标准数据集和ORL人脸数据库上的实验说明此算法较以往支持向量预选取算法可以更为快速准确地进行支持向量预选取.
-
单位忻州师范学院