摘要
近年来粉尘爆炸引起的安全生产事故频繁发生,在线检测粉尘易集聚场所的粉尘云浓度并进行预警,成为控制粉尘爆炸的关键手段,而目前粉尘浓度传感器在大空间粉尘云聚集场所存在安装与识别局限性。为此,提出基于深度学习的可燃性粉尘云图像检测方法;采用基于卷积神经网络(CNN)的Faster R-CNN模型,对可燃性粉尘云进行端到端的检测与识别;并通过建立的粉尘云标准浓度图像数据库验证模型的有效性。结果表明:Faster R-CNN模型具有较高的识别精度。
-
单位中国矿业大学(北京); 中国安全生产科学研究院; 东北电力大学