摘要
本发明公开了一种基于单样本学习的工业产品缺陷检测方法,该方法首次提出了一种基于单样本学习的微调条件网络。在网络中,条件模块保证了网络能够更完整地学习辅助数据集的特征,概率图生成模块提高了检测算法在不同任务之间的可移植性。在只使用一个带注释的样本作为监督的情况下,微调条件网络能够判断缺陷是否存在,并在灰度图像中定位它们。本发明能够准确地检测不同工业产品上不同类型且不同形状的表面缺陷,具有良好的鲁棒性和兼容性。
-
单位华南理工大学; 广州现代产业技术研究院