摘要
目的 低质量3维人脸识别是近年来模式识别领域的热点问题;区别于传统高质量3维人脸识别,低质量、高噪声是低质量3维人脸识别面对的主要问题。围绕低质量3维人脸数据噪声大、依赖单张有限深度数据提取有效特征困难的问题,提出了一种联合软阈值去噪和视频数据融合的低质量3维人脸识别方法。方法 首先,针对低质量3维人脸中存在的噪声问题,提出了一个即插即用的软阈值去噪模块,在网络提取特征的过程中对特征进行去噪处理。为了使网络提取的特征更具有判别性,结合softmax和Arcface(additive angular margin loss for deep face recognition)提出的联合渐变损失函数使网络提取更具有判别性特征。为了更好地利用多帧低质量视频数据实现人脸数据质量提升,提出了基于门控循环单元的视频数据融合模块,实现了视频帧数据间互补信息的有效融合,进一步提高了低质量3维人脸识别准确率。结果 实验在两个公开数据集上与较新方法进行比较,在Lock3DFace(low-cost kinect 3D faces)开、闭集评估协议上,相比于性能第2的方法,平均识别率分别提高了0.28%和3.13%;在ExtendedMulti-Dim开集评估协议上,相比于性能第2的方法,平均识别率提高了1.03%。结论 提出的低质量3维人脸识别方法,不仅能有效缓解低质量噪声带来的影响,还有效融合了多帧视频数据的互补信息,大幅提高了低质量3维人脸识别准确率。
- 单位