摘要
为提升相关滤波算法在目标遮挡、快速运动以及背景杂乱等情况下跟踪结果的精确度和鲁棒性,提出了一种基于深度特征与局部约束掩膜(Local constrained mask,LCM)的相关滤波跟踪算法。在鉴别性相关滤波跟踪算法的基础上,利用学习得到的二值矩阵作为LCM对滤波器的能量分布进行裁剪,对模板边缘与测试图像之间产生的响应值进行抑制,实现扩大目标搜索区域的同时降低边界效应对跟踪结果的影响;将深度特征引入到特征提取过程中,通过对目标样本进行旋转、翻折和高斯模糊等处理,扩充训练样本数量,使模板学习到更为丰富的目标信息。与主流算法进行对比实验,验证了本文算法在处理目标遮挡、背景嘈杂以及光照变化等干扰时的鲁棒性。
- 单位