摘要
传统网络优化中路测工作存在难以全量测试道路及楼宇、测试工作量大、工作效率低、周期长、受人为因素影响等显性缺点,无法动态关注每个区域网络质量情况,且常规测量报告(measurement report,MR)数据不具备定位信息,无法精确定位如重叠覆盖度问题发生位置。基于最小化路测(minimization drive test,MDT)精准定位系统通过采集底层基站MDT数据,并根据重叠覆盖度算法输出高重叠覆盖度栅格,再通过自适应K最近邻-具有噪声的基于密度的聚类方法(K-nearest neighbor density-based spatial clustering of applica-tions with noise,KNN-DBSCAN)联合算法解决了DBSCAN算法对参数设置敏感性问题,并对问题栅格进行非监督聚类,收敛问题连片区域,通过小区采样贡献度进行栅格区域映射,最终达到精准调整全局最高优先级(TOP)小区,降低小区高重叠覆盖度的目的。
-
单位中国移动通信集团云南有限公司