摘要
近年来,"Deepfake"视频引起了广泛的关注。人们很难区分Deepfake视频。这些篡改的视频将给社会带来巨大的潜在威胁,如被用来制作假新闻等。因此,目前需要找到一种有效识别这些合成视频的方法。针对上述问题,提出了一种基于3D CNNS的深度伪造视频检测模型。该模型注意到Deepfake视频的时域特征和空域特征的不一致,而3D CNNS可以有效捕获Deepfake视频的这一特征。实验结果表明,基于3D CNNS的模型在Deepfake检测挑战数据集和Celeb-DF数据集上具有较高的准确率和较强的鲁棒性,准确率可达96.25%,AUC值可达0.92,同时该模型解决了泛化性差的问题。通过与现有的Deepfake检测模型进行对比,所提模型在检测准确率和AUC取值方面均优于现有模型,验证了该模型的有效性。
- 单位