摘要

为使巡检机器人能够对体积小且密集、形态多变、数量多且分布不均的害虫进行高效精准识别,提出了一种基于改进YOLO v7的害虫识别方法。该方法将CSP Bottleneck与基于移位窗口Transformer(Swin Transformer)自注意力机制相结合,提高了模型获取密集害虫目标位置信息的能力;在路径聚合部分增加第4检测支路,提高模型对小目标的检测性能;将卷积注意力模块(CBAM)集成到YOLO v7模型中,使模型更加关注害虫区域,抑制背景等一般特征信息,提高被遮挡害虫的识别精确率;使用Focal EIoU Loss损失函数减少正负样本不平衡对检测结果的影响,提高识别精度。采用基于实际农田环境建立的数据集的实验结果表明,改进后算法的精确率、召回率及平均精度均值分别为91.6%、82.9%和88.2%,较原模型提升2.5、1.2、3个百分点。与其它主流模型的对比实验结果表明,本文方法对害虫的实际检测效果更优,对解决农田复杂环境下害虫的精准识别问题具有参考价值。