摘要
为提高非线性数据降维算法效能,分析这类算法的特点,综合考虑KNN计算和解决Sparse特征值两个问题,提出将LLE算法中的KNN搜索算法及大型稀疏矩阵解特征值这两个部分并行在GPU的运算平台上,通过这种方法来加快所有基于LLE发展而来的数据降维技术的执行时间。仿真计算结果表明,在KNN方面整体加速可达40至50倍,在解大型稀疏矩阵特征值的部分加速至10倍左右。整体来说,数据降维算法加速10倍左右,有效运用GPU提高了LLE这类算法的性能。
-
单位新疆财经大学