摘要

针对相关向量机(RVM)算法分类精度低、核参数选择困难等问题,文中提出临界滑动阈值的概念并以其为基础将RVM与K近邻(KNN)算法结合构建分类器——KNN-RVM分类器.从理论上提出并证明KNN-RVM分类过程等价于带软间隔约束的支持向量机的分类过程、KNN-RVM分类器等价于每类只选一个代表点的1-NN分类器、KNN-RVM分类效果优于RVM这3个结论.对这3个不同数据集进行实验证明临界滑动阈值的临界性与滑动性及KNN-RVM分类器的准确性、适应性及全局最优性,提高分类精度,减轻算法对核参数的依赖性,进而证明KNN-RVM分类器是一种有效的分类器.