双通道的BCBLA情感分类模型

作者:万俊杰; 任丽佳*; 单鸿涛; 孟金旭; 贾仁祥
来源:小型微型计算机系统, 2023, 44(05): 954-960.
DOI:10.20009/j.cnki.21-1106/TP.2021-0708

摘要

针对传统情感分类模型的词向量表示无法解决多义词表征的问题,以及目前基于BERT的多通道情感分类模型研究较少的问题,提出了一种基于BERT的双通道情感分类模型BCBLA.该模型有BERT+CNN和BERT+BiLSTM-Attention两个通道,首先用预训练模型BERT获取融合文本语境的词向量表征;然后利用通道1的CNN网络增强对文本局部特征提取的能力和通道2的BiLSTM-Attention模型增强对长序列文本处理以及关键情感分类特征提取的能力;最后使用Softmax激励函数对通道1和通道2的融合特征进行分类.为了验证本文提出的模型的有效性,本文在中文谭松波酒店评论和英文Yelp Dataset Challenge两种数据集进行实验,设置了与当前流行的情感分类模型对比、减少通道后的模型对比和更换预训练模型后的对比等3种实验对比方式,最终实验结果表明,本文BCBLA模型在中文和英文两种数据集上测试结果中值分别取得了92.86%和95.55%的最佳效果.