摘要
叶绿素是作物生长中的重要因素,可用于实时监测作物的生长状况。以常规高油酸油菜品种为材料,采用大田试验研究油菜叶片在不同栽培措施下幼苗期、蕾薹期叶片的光谱响应,通过计算反射光谱及其反射光谱的一阶导数与SPAD值的相关性,结合逐步回归挑选出油菜叶片敏感波段,并计算光谱指数。采用一元线性回归和神经网络建立叶绿素含量估算模型。结果表明,由光谱指数所构建的神经网络叶绿素估算模型,精度评价结果均显示比较高的水平,幼苗期反射率光谱指数构建的模型精度最高,决定系数R2为0.807 0,均方根误差(RMSE)为1.131 5,蕾薹期一阶导数光谱指数构建的模型精度最高,决定系数R2为0.873 2,均方根误差(RMSE)为1.322 3,在蕾薹期和幼苗期通过构建BP神经网络模型能够较好的对油菜叶绿素进行反演。为利用高光谱技术大范围监测油菜叶绿素含量提供了一定的理论依据。
- 单位