摘要

能谱CT可以将较宽的能谱数据划分为几个单独的窄谱数据,从而同时获得多个能量通道下的投影.但由于窄谱通道内接收到的光子数较少,投影通常包含较大的噪声.针对这一问题,基于压缩感知理论提出了一种基于字典学习和全变分TV(total-variation)的迭代重建算法用于能谱CT重建,应用交替最小化方法优化相关目标函数,并采用Split-Bregman算法求解.同时,采用有序子集方法加速迭代收敛过程,提高运算速率.为了验证和评估所提出的方法,使用简单模型和实际临床小鼠模型进行了仿真实验,实验结果表明,所提出的算法有较好的去噪及细节保存能力.