摘要

鉴于OpenPose进行肢体识别复杂度较高,提出基于TfPose完成人体骨架提取,并采用神经网络集成学习方法对吊装指令肢体信号进行识别,完成智能化吊装操作。首先,采用D-H法对吊装机器人进行正运动学分析,确定卷扬机构工作空间范围,并使用共形几何代数方法求解其逆运动学,完成吊装机器人从当前位置运动到目标位置的数学建模;然后,基于TfPose获取人体骨架向量和RGB骨架图,以BP神经网络和InceptionV3网络为基分类器,采用神经网络集成学习方法确定最优化权重,完成吊装指令肢体信号识别;最后,将识别的吊装指令肢体信号通过UDP通信传送给吊装机器人控制模块,以完成吊装操作。实验结果表明,该方法平均肢体识别精度达0. 977,提高了吊装效率。