摘要

<正>一、性质如图1, P为■ABCE所在平面上任一点,记PA=a,PB=b,PC=c,PD=d,AB=s,BC=t,BD=m,则m2-(s2+t2)=(b2+d2)-(a2+c2).我们先证明如下引理.引理如图2,在四边形ABCD中,AD∥BC,记AB=a,BC=b,CD=c,DA=d,BD=m,AC=n,则m2+n2=a2+c2+2bd.证明如图3,以BD为半径作⊙B,以CD为半径作⊙C,⊙B与⊙C的另一交点为D′,直线AD与⊙B、⊙C的另一交点分别为E、F.连结DD′、ED′、FD′,易知BC⊥DD′(连