非线性偏微分方程(组)是现代微分方程研究中的重中之重,在解决物理学、生态学、气动力学等领域问题中起到重要作用。但非线性偏微分方程求解难度很大,本文利用Leray-Schauder不动点定理证明了一类半线性椭圆型方程边值问题解的存在性,并对非线性项在满足两种不同情形时,证明了其解的唯一性;并且讨论了若干个条件在不同定理中使用的情况,利用确界原理和格林第一公式得出了4个重要定理。