提出一种基于分段时域自适应算法和等几何分析的求解粘弹性问题的数值方法。利用时域分段展开,建立了递推格式的比例边界元求解方程,环向比例边界采用等几何技术离散,在继承常规比例边界有限元半解析、便于处理应力奇异性/无限域问题等优点的同时,可更准确地描述几何边界,由此进一步提高了计算精度;在时域,通过分段时域自适应计算,保证不同时间步长下的计算精度。通过数值算例,从计算精度、收敛性等方面,对所提方法的有效性进行了验证。