摘要

针对无迹卡尔曼滤波(UKF)在非高斯噪声或统计特性不准确时滤波精度会下降甚至发散等问题,提出了一种基于Huber-M估计的无迹卡尔曼滤波导航算法。首先采用奇异值分解(SVD)迭代计算代替协方差矩阵的迭代变换;然后将Huber方法用于UKF框架中,使先验信息和量测信息进行重构;最终以达到克服传统UKF滤波器稳定性差的问题,提高滤波抗差能力。对提出算法进行GPS/UWB组合导航仿真验证,并与EKF和UKF进行了比较。实验结果表明,加入M估计的SVD-UKF在噪声统计特性不准确时和加入随机观测异常状态下都可以将滤波器性能提高25%~40%,与其他两种算法相比,本文所提算法的定位误差能快速收敛,并保持较高滤波精度。

全文