为了解决短期电力负荷不同预测方法的预测角度片面性、预测精度差等问题,提出了基于小波神经网络(WNN)的组合预测模型.首先用小波神经网络预测模型和历史平均模型分别进行预测,然后再通过小波神经网络对两单一模型的预测值进行组合.相比BP神经网络组合模型,该组合预测模型的预测精度大大提高.该模型同时引入模糊聚类分析的方法选取组合模型的训练样本,减少了训练样本的冗余性,提高了预测模型的精度.