摘要

由于水下目标检测面临着图像模糊、尺度多样化、复杂背景等问题,给水下目标检测应用带来很多挑战.本文提出了一种基于类加权YOLO网络的水下目标检测方法,主要思想是在深度网络YOLO的基础上,构造了类加权损失函数,来平衡样本难易程度以获得更好的效果,并引入了目标框自适应维度聚类方法,进一步提升了检测性能.实验结果表明,本文算法与传统的YOLO网络模型相比,在每幅图片包含近20个目标的密集目标检测任务中,能够将平均准确率从71.2%提升至74.1%,召回率由71.1%提升到78.3%.