摘要
为了对比支持向量回归(SVR)和核岭回归(KRR)预测血糖值的效果,本文选择人工智能辅助糖尿病遗传风险的相关数据进行实证分析.首先对数据进行预处理,将处理后的数据导入Python.其次,为了使SVR和KRR的对比结果具有客观性,使用了三种有代表性的核方法(线性核函数,径向基核函数和sigmod核函数).然后,在训练集上采用网格搜索自动调参分别建立SVR和KRR的最优模型,对血糖值进行预测.最后,在测试集上对比分析SVR和KRR预测的均方误差(MSE)和拟合时间等指标.结果表明:均方误差(MSE)都小于0.006,且KRR的MSE比SVR的小0.0002,KRR的预测精度比SVR更高;而SVR的预测时间比KRR的少0.803秒,SVR的预测效率比KRR好.
- 单位