摘要

随着智能配电网络规模的扩大以及电网结构的复杂化,电力大数据呈指数级增长,电力设备的检、监测评估面临新的挑战。在大数据原理和数据挖掘分析的基础上,提出一种基于随机矩阵理论和聚类算法的电能表运行状态评估方法。首先,对电力大数据统一预处理,完成时间序列数据表征;然后,采用实时分离窗技术整合时序数据;其次,基于随机矩阵理论,对多维度电能表时间序列数据实时计算、分析统计量时序特征;进一步,采用改进的时间规整聚类算法计算时序数据相似度,从而对随机矩阵统计量聚类分级;最后,分析聚类结果,得到电能表运行状态评估等级和范围,完成电能表实时运行状态评估。实例分析和对比研究结果表明,与传统的主元分析评估方法相比,所提出的新型电能表运行状态评估方法具有良好的鲁棒性、可靠性和时效性,为电力电网检测技术应用研究提供了新思路。

  • 单位
    国网重庆市电力公司电力科学研究院