摘要

针对现有电力大数据的异常检测方法存在的准确度低、检测效率慢等问题,在数据挖掘的基础上,提出了一种将孤立森林算法和局部离群因子算法相结合的电力大数据异常检测方法。从全局和局部两个方面对电力大数据进行异常检测,提高了电力大数据检测的优越性。为了验证该方法检测结果的优越性,通过仿真对该方法进行对比分析。结果表明,与传统的异常检测方法相比,该方法具有更高的检测效率,能够更准确地检测出用户侧电力数据异常值。