摘要
为了提高动车检修效率和准确性,设计了一种基于多任务级联的动车裙板螺栓缺陷检测算法。首先结合螺栓缺陷特征的先验知识,在YOLOv3的基础上引入注意力机制,采用通道级拼接方式引入螺栓的边缘特征图,引导检测网络学习鲁棒的螺栓缺陷特征,检测螺栓是否缺失;然后对螺栓局部区域进行语义分割,获得防松标记线信息,并基于这些信息判断是否存在螺栓松动和标记线缺失等缺陷。实验结果表明,该检测算法显著提升了动车裙板螺栓缺陷的检测性能,与YOLOv3相比,平均准确率提升11.3%,平均召回率提升13.6%。
-
单位自动化学院; 华中科技大学