摘要
针对多模态过程数据方差差异明显的空间分布特点,提出一种基于局部相对概率密度k近邻(LRPD-kNN)的多模态过程故障检测方法。首先对训练数据进行标准化,计算训练数据的局部相对概率密度估计值,消除多模态数据的方差差异。然后,对预处理后的数据建立kNN模型,计算统计量和控制限。对于测试数据,计算与训练数据局部相对概率密度的欧式距离平方和,通过比较统计量与控制限进行多模态故障检测。将该方法应用到数值例子和半导体生产过程,仿真结果表明,提出的算法效果要优于PCA、kNN和局部离群因子(LOF)方法,说明算法在方差差异较大的多模态过程故障检测方面具有很高的准确性。
- 单位