摘要

水稻产量与水稻穗数和穗子质量密切相关,精确预测水稻产量可以加快育种速度.以盆栽水稻为研究对象,首先利用可见光图像结合图像处理技术进行特征提取,获取整株水稻的51个表型特征.结合深度学习,运用Faster RGCNN卷积神经网络训练模型对水稻穗数进行检测,同时使用SegNet网络框架训练得到的模型对水稻稻穗进行分割,得到水稻穗部的二值图像,结合图像处理技术提取穗部的33个表型特征数据.提取了颜色、形态、纹理共85个表型参数,对所有85个数据进行归一化处理,将归一化的85个表型数据与稻穗鲜质量、干质量进行逐步线性回归,挑选相关性高的特征数据.分别使用穗数和33个特征穗部、51个特征整株、所有85个...