摘要

为提高光伏发电功率预测的精度和时效性,降低电网调度的安全隐患,提出了一种基于数字孪生模型、联合神经网络以及融合预测模型的光伏发电功率预测技术。该技术以针对常态预测的CNN-LSTM网络和针对超短期预测的集成学习融合预测模型为核心,以光伏发电系统的数字孪生模型为基础框架,以某光伏电站的实测数据为基础进行了分析,实现了实时的多模式光伏发电功率精确预测。结果表明:改进的CNN-LSTM联合网络模型能够实现较高预测精度,相比于现有的主流预测算法精度提高了约36%~58%;针对超短期的发电功率预测这一难点,集成学习融合框架可以进一步将预测精度提高25%左右。

  • 单位
    宁夏电力调度控制中心