摘要

传统大坝预测方法难以适应坝体变形序列的高维非线性特征,且仅能以点值的形式预测大坝变形,未能有效量化由数据随机噪声、输入样本的主观确定、参数的随机选择等引起的结果不确定性。针对上述问题,提出了基于Bootstrap和改进布谷鸟优化多核极限学习机(ICS-MKELM)算法的大坝变形预测模型,实现在精确预测大坝变形点值的同时,通过区间形式量化预测值的不确定性。首先,建立基于高精度多核极限学习机(MKELM)的大坝变形预测模型,该模型集成了核极限学习机(KELM)高效处理强非线性回归问题的优势和混合核泛化、学习能力强的特点,同时采用基于惯性权重和混沌理论改进的布谷鸟搜索(ICS)算法对多核极限学习机中核参数及正则系数进行优化,弥补模型易陷入局部最优的不足;其次,引入Bootstrap区间预测方法对模型和数据造成的不确定影响进行量化;最后,将所提模型应用于某实际大坝工程的变形预测,分析了不同训练样本数对模型预测精度的影响,同时通过与五种常用的预测算法进行对比,验证了本文模型具有一致性和优越性。

  • 单位
    天津大学; 水利工程仿真与安全国家重点实验室