摘要

社交媒体谣言检测是当前研究的热点问题,现有方法多数通过获取大量用户属性学习用户特征,但不适用于谣言的早期检测,忽略了用户之间的潜在关系对信息传播的影响。提出一种基于多传递影响力的谣言检测方法,根据源微博及其对应转发(评论)之间的关系构建文本信息传播图,并通过图卷积神经网络来捕获、学习文本信息的传播特征。利用文本信息和用户传播过程中的影响力,丰富可用于谣言检测早期的检测信息。将存在转发关系的用户构成用户影响力传播图,构建一种用户节点影响力学习方法,获取用户节点影响力,以增强用户特征信息。在此基础上,将文本特征与用户特征融合以进行谣言检测,从而提升检测效果。在3个真实社交媒体数据集上的实验结果表明,该方法在谣言自动检测以及早期检测的效果都有显著提升,与目前最好的基准方法相比,在微博、Twitter15、Twitter16数据集上的正确率分别提高了2.8%、6.9%和3.4%。

全文