摘要
针对红外与可见光图像融合中存在的显著目标不突出、对比度低、存在较多的伪影问题,提出了一种结合快速自适应二维经验模态分解(fast and adaptive bidimensional empirical mode decomposition,FABMED)和改进的显著性检测的图像融合算法。首先,通过FABEMD对红外和可见光图像进行多尺度分解得到对应的基础层和细节层。然后,对最大对称环绕显著性检测做暗抑制改进,将其用于基础层的融合上;结合改进的显著性检测和引导滤波,对细节层进行融合。最后,对各融合子图进行FABEMD逆变换重构出融合图像。与其他经典的融合算法相比,仿真实验验证了本文算法的有效性。