摘要
聚焦传统基于统计、信息论和机器学习的异常流量检测方法存在依赖专家经验、准确度较低、误报率高和泛化能力不足等问题,提出了一种基于堆叠稀疏自编码器(Stacked Sparse Auto-Encoder, SSAE)和双向LSTM模型的异常流量检测方法,基于SSAE进行流量数据特征提取,改变了之前全部依赖专家知识数据库的做法,从根本上避免人的主观性,提高流量数据的真实性和客观性;将双向LSTM模型提取的局部时序信息和使用多头注意力机制提取的全局信息相融合,详细阐述了模型构建过程和算法设计核心步骤;通过设计典型场景,选取数据集和准确率、召回率以及F1评分评估指标,验证所设计模型算法的精准度和鲁棒性。实验结果表明,提高了异常流量的检测精度,增强了模型泛化能力,对异常攻击和资源优化调控具有辅助决策作用。
- 单位