摘要

针对在噪声水平比较高的情况下难以从噪声图像本身提取准确先验信息的问题,提出一种从外部干净图像数据集学习非局部自相似先验信息的图像去噪方法。首先用高斯混合模型学习外部干净图像的非局部自相似先验信息,其次利用最大后验概率估计的方法找到与噪声图像块最匹配的外部先验信息,最后利用外部先验对噪声图像块进行稀疏表示。实验对比表明,所提算法在去除噪声的同时可以较好地保留图像的细节信息,使图像数据集的平均峰值信噪比提高0.18 dB以上。