摘要

针对分布式光纤入侵监测系统在室外复杂环境下误报率过高的问题,提出了一种基于时/频域综合特征提取的入侵事件识别方法。使用自适应幅值门限信号切分算法找出有效振动信号片段,在此基础上提取平均片段间隔特征。选取最大能量片段作为主要研究对象,提取片段长度和峰均比特征,并对其进行小波包分解,生成频域能量分布特征,组成时/频域复合特征向量,使用高性能的支持向量机多分类算法进行模式识别。实验结果表明:该方法对行人脚踩、自行车轧过、拍击围栏和剪切光缆这4种典型入侵事件的平均识别正确率达到了98.33%,相比于仅提取时域或频域特征方法的识别正确率均有显著提高。该方法对光路光功率变化不敏感,能有效提升系统的实用性。