摘要

针对乳腺超声图像分类中的标签噪音问题,该文设计了一种协作标签修正网络(COLC-Net)。该方法基于乳腺超声BI-RADS评级噪音分布特点,为乳腺超声图像定义了软标签,并设计了双网络协作训练,以蒸馏优秀知识修正软标签。随着软标签准确性的增加,可以降低噪音标签负作用,并增强准确标签知识的学习。与现有最新方法进行比较,结果证实了该方法具有更好的效果。