摘要

针对传统的粒子群优化算法容易陷入局部最优解的问题,提出了一种自适应粒子群优化算法,在迭代寻优过程中自适应地调节惯性权重和2个学习因子的数值。建立了无人机在山区环境执行勘察任务的航迹规划环境模型,分析了无人机自身约束条件。设计了自适应粒子群优化算法的适应度函数和航迹规划算法流程。分别采用自适应粒子群优化算法和传统粒子群优化算法开展了无人机三维航迹规划仿真实验。仿真结果对比表明,所提出的自适应粒子群优化算法比传统粒子群优化算法具有更高的全局搜索能力和搜索精度。

  • 单位
    烟台南山学院