摘要

准确预测露天矿边坡变形是有效实现边坡临灾预警的重要保证,针对传统边坡变形预测方法无法表征和综合分析边坡变形受多种因素的影响,提出一种露天矿边坡变形的人工蜂群(ABC)算法优化广义回归网络(GRNN)组合预测模型(ABC-GRNN)。在此预测模型中,综合考虑了影响露天矿边坡变形的5个因素:开采扰动、降雨量、降雨持续时间、温度以及湿度。以山西中煤平朔安家岭露天矿为例,通过遗传算法改进BP神经网络(GA-BPNN)、支持向量机(SVM)等人工智能算法与实测变形数据进行预测效果对比分析。结果表明:ABC算法能够快速帮助GRNN寻优获取合适的传递参数,并对变形进行有效的预测。ABC-GRNN组合预测模型,将预测结果的平均绝对误差292.9 mm、平均绝对百分比误差0.691 3%及均方根误差338.9 mm分别降低到25 mm、0.043 3%和29.5 mm,说明该模型具有更高的预测精度;ABC-GRNN模型比其他模型收敛速度快,只经过7步的迭代,即可得到最小的均方误差。与其他预测模型相比较,本文模型的预测精度更高、泛化能力更强、收敛速度更快,有较高的实用价值。