摘要

在动态社会网络中,诸如垃圾邮件之类的噪声会影响网络的稳定性,导致其社团结构难以被准确发现。针对该问题,提出一种采用增量结构的社团发现算法。利用相对熵处理噪声,通过改进的增量算法发现社团结构。实验结果表明,该算法针对不同动态社会网络的发现性能均优于传统动态社团发现算法,其模块度可达到0.8左右,互信息值变化也较平稳,可有效避免噪声对算法性能的影响。