摘要
建立了差分拉曼光谱技术结合K-means聚类法对牙膏快速分类的方法。对37个牙膏样品编号,将其分别涂抹于载玻片上,晾干,使用差分拉曼光谱仪进行扫描。调用R语言软件中fpc、factoextra、cluster数据库中的na.omit和scale函数对37个牙膏样品的差分拉曼光谱数据进行标准化处理,利用手肘法和Gap Statistic算法优化聚类数。在最佳聚类数为4的条件下,通过K-means聚类法对牙膏样品进行分类,并使用层次聚类分析法进行验证。结果显示,37个牙膏样品被分为4类,并且两种方法的分类结果一致。
-
单位中国人民公安大学; 中国刑事警察学院