摘要
根据隧道掘进机(TBM)工程对前方地质条件的超前预警需求,开展围岩识别算法研究。针对原始VGG16网络结构待定参数过多以及知识蒸馏训练模式准确率不足的问题,提出一种基于改进VGG16网络的围岩识别方法。基于原始VGG16网络结构,优化其分类层结构,并减少网络复杂度,大幅降低网络待定参数量。基于传统知识蒸馏训练模式,优化其训练逻辑,提升网络对目标任务的特征提取能力。采用某隧道掘进工程的岩渣图像数据集,对上述方法进行验证。试验结果表明,该方法可在小幅提升准确率的同时,大幅减少网络的待确定权值参数。综上所述,该方法创新性地同时改进模型结构和训练模式,更适用于硬岩掘进条件下的围岩识别任务。
-
单位上海工业自动化仪表研究院有限公司; 上海交通大学