摘要
针对变电站巡检机器人在室外进行指针式仪表读数识别时存在检测精度低和读数误差大等问题,提出了一种基于CenterNet和DeepLabv3+的指针式仪表读数识别方法。ECA-Net是一种不降维的局部跨信道交互策略和自适应选择一维卷积核大小的方法,在CenterNet的主干网络引入ECA-Net轻量级注意力机制模块,加强了不同通道之间的特征联系;在DeepLabv3+的ASPP模块并行连接DAMM双注意力机制模块,DAMM模块中的位置注意力模块能够有效模拟出图像位置间的长期上下文依赖信息,将不同局部特征信息连贯起来,提高了语义分割能力;DAMM模块中的通道注意力模块利用不同通道的相关类别特征间的关联性进行不同类别特征强化,提升像素分类精度;利用基于线性变换理论的椭圆透视变换和仿射变换来矫正畸变仪表图像,获取仪表正立图像,提高指针直线拟合角度的精确度,从而减小读数误差。使用该方法进行了大量的仿真与现场测试,结果表明,在仪表检测阶段,所设计模型的mAP比原始模型提高了7.51%;在仪表读数识别阶段,矫正前仪表读数预测值和仪表真实值之间的标称误差为6.0%,平均误差为4.2%,矫正后仪表读数预测值和仪表真实值之间的标称误差为2.0%,平均误差为1.3%,从而验证了所提方法的有效性。
- 单位