摘要

针对电站锅炉NOx浓度和发电效率的非线性及复杂耦合关系问题,分别建立某320 MW火电机组RBF神经网络模型、BP神经网络模型和模糊规则模型。采用满负荷70%~80%的常规工况进行训练,RBF神经网络有效地预测了发电效率及NOx排放浓度,平均相对误差分别为2.03%和2.41%。根据专家经验制定25条模糊控制规则,将RBF神经网络的输出值作为模糊控制器输入值,对锅炉运行参数进行调整,并将调整后的值输入BP神经网络进行预测。结合RBF/BP神经网络和模糊控制规则建立了综合优化模型,使NOx调整值相对于实际值平均下降了7.89 mg/m3,发电效率提高了1.08%。

全文