摘要
针对YOLOv3算法在行人检测上准确率低和漏检率高的问题,提出一种改进型YOLOv3的行人检测方法,并将其定义为GA-Wide-YOLOv3。该方法首先以行人头肩小目标为检测对象,进行重构数据集,利用遗传算法重新对目标先验框进行聚类,优化anchor参数,提高先验框与数据集的重合程度;其次改进YOLOv3,通过加宽网络宽度、减少网络深度,获得针对小目标检测的较大视野阈,避免梯度消失;最后,将多尺度检测算法3个yolo层前的1*1,3*3的卷积组各去掉2组,减少头肩小目标在复杂背景下的漏检率。在收集的数据集HS6936上进行对比实验,结果表明,基于遗传算法改进的K-means算法,平均交并比为81.89%,提高了0.8%;改进的YOLOv3算法检测平均准确率(mAP)为75.35%,召回率为81.20%,查准率为99.99%,较原始YOLOv3算法分别提高了2.53%,0.88%和2.75%。
-
单位自动化学院; 江西理工大学; 北京天地玛珂电液控制系统有限公司