摘要

为解决噪声干扰导致轴承故障分类准确率降低的问题,提出了一种基于格拉姆角场(GAF)和多尺度卷积神经网络(MSCNN)的端到端故障诊断方法。通过对故障信号进行GAF图像变换保留时间序列的相关性与依赖性,并将图像输入MSCNN中进行分类,利用改进的激活函数克服传统CNN的梯度下降问题以获得更好的分类结果。试验结果表明,所提方法在轴承故障诊断中的分类准确率能够达到99.67%,而且具有较高的鲁棒性,适用于不同工况下轴承振动信号的故障诊断。

全文