摘要
杭州紫之隧道浅埋暗挖北段处于地下水丰富的软弱地层中,施工过程中产生的地表沉降量难以控制,波动范围较大.为了准确评估施工风险,采用BP神经网络对最大地表沉降进行预测.首先对地表沉降的影响因素进行选取和量化,构成样本数据组.然后通过试错法,建立预测精度最高的一般BP神经网络和遗传算法优化的BP神经网络模型,研究发现BP神经网络在预测地表沉降方面效果较好,且使用遗传算法可以进一步提升预测精度.接着探讨了地层渗透性对BP神经网络预测精度的影响,研究发现不考虑地层渗透性会使预测精度大幅下降.最后对BP神经网络模型参数进行了敏感性分析,揭示了预测沉降的变化趋势符合客观变形机理.
-
单位中国电建集团华东勘测设计研究院有限公司